## Diabetic ketoacidosis (DKA) in children and adolescents

# Dr. Amphayvanh MANIVONG pediatric general ward Mahosot hospital

#### **Outline**

- Definition
- Risk factors
- Pathophysiology
- Diagnostic considerations
- Management
- Complication of management cerebral edema

### Diabetes Mellitus (DM)

Fasting plasma glucose > 126 mg/dL

Type 1 Insulin deficiency

Type 2 Insulin resistance

hyperglycemia

ketoacidosis

dyslipidemia

### DM: symptoms & signs

Polyuria, polydipsia, polyphagia Weight loss, lethargy

Vaginal moniliasis

T2DM: mild symptoms

obesity

Dx with complications

### Diabetic ketoacidosis (DKA)

**DKA:** relative, absolute insulin deficiency

```
increased level of counter-regulatory hormones
```

catecholamines

glucagon

cortisol

growth hormone

stress from sepsis, trauma, G-I illness

New case

Known case do not take insulin

DKA – severe depletion of water and electrolytes from intra- and extracellular fluid compartments

#### Clinical manifestations of DKA

Dehydration

Rapid, deep, sighing (Kussmaul breathing)

Nausea, vomiting, abdominal pain

Progressive obtundation, loss of consciousness

Tachycardia, hypotension, shock coma, dead

(Fever from infection)

#### Definition: biochemical criteria

```
Plasma glucose >200 mg/dL
Metabolic acidosis, venous pH < 7.3
              bicarbonate <15 mmol/L
Serum ketone, urine ketone and
Glucose positive
[Rare euglycemic ketoacidosis (low CHO intake)
5 % of T2DM with new diagnosis
Leukocytosis with left shift
Nonspecific elevation of serum amylase
```

### **Severity of DKA**

|                      | Mild | Moderate | Severe |
|----------------------|------|----------|--------|
|                      |      |          |        |
| Venous pH            | >7.2 | >7.1     | <7.1   |
|                      | <7.3 | <7.2     |        |
| Bicarbonate (mmol/L) | <15  | <10      | <5     |

### Frequency and risk factors

#### New cases

incidence T1DM 0.6:100,000 northeast Thailand

Known cases: recurrent DKA

poor control

omit insulin

peripuberty, puberty

psychiatric, eating disorders

unstable family

poor medical services

insulin pump therapy, short-acting

#### Hyperglycemic hyperosmolar state (HHS)

```
Serum glucose > 600 mg/dL (33 mmol/L)

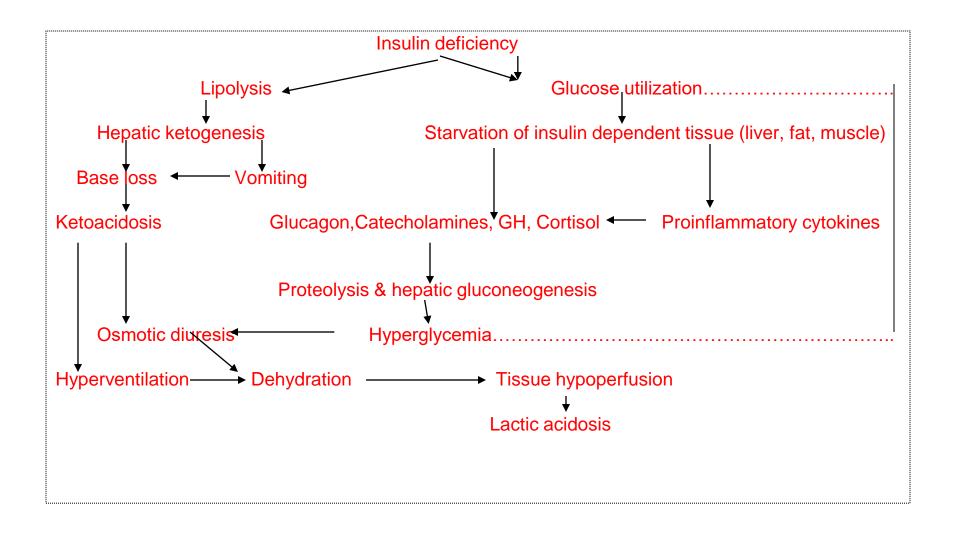
Serum osmolality > 320 mOsm/L

Osmolality = 2(Na + K) + glucose (mg/dL)

18
```

Minimal ketonemia, ketonuria

Mild to moderate acidosis


Serum HCO3 > 15 mmol/L

Stupor or coma

Very severe dehydration but mild or moderate acidosis

T2DM > T1DM (satisfy polydipsia with high concentration fluid)

### Pathophysiology of DKA



### Management of DKA

Emergency assessment

Confirm the diagnosis

Look for infection, insulin omission

Body weight

Severity of dehydration 5-10%

Level of consciousness (Glasgow coma scale)

Blood sample

Urine ketone

Specimen for cultures: blood, urine, throat

EKG base line evaluation of K+

# Severity of dehydration 5-10% Prolonged capillary refill time (N<1.5-2 sec) Abnormal skin turgor Hyperpnea

#### **Blood sample**

Glucose, ketones (beta-hydroxybutyrate)

Electrolyte, BUN, Cr

Venous, arterial pH

**Osmolality** 

CBC (DKA is associated with leukocytosis)

Ca, Po4, Mg, HbA1c

### Supportive measures

Secure airway, empty stomach

Peripheral IV catheter or arterial cath (critical ill)

Cardiac monitor (T wave for hypo-, hyper K)

Oxygen in shock

Antibiotics after culture, bladder cath

### Monitoring

```
Flow chart hr by hr:
        clinical, IV medications, fluid, lab
        results
Hourly: VS, neuro signs (GCS)
        fluid I/O
        amount of insulin
        capillary blood glucose
2-4 hr: electrolyte, glucose, BUN, Ca, Mg,
       PO4, Hct, blood gas, urine ketones until
       cleared
```

#### Corrected Na

Osmotic effect of hyperglycemia→ induced dilutional hyponatremia

#### Corrected Na =

measured Na + [plasma glucose (mg/dL) – 100] x 1.6

### Goal of therapy

- Correct dehydration
- Correct acidosis and reverse ketosis
- Restore BS to near normal
- Avoid complications of therapy
- Identify and treat any precipitating event

### **Treatment of DKA**

- 1. Fluid and electrolyte therapy
- 2. Insulin
- 3. Treat precipitating factors

### Fluid and electrolyte therapy

Moderate DKA 5-7 %

Severe DKA 7-10 %

#### **Objectives**

Restoration of circulatory volume

Replacement of Na and ECF, ICF water deficit Improved GFR

Reduction risk of cerebral edema

### Estimating the level of dehydration

|                   | Mild                          | Moderate                                | Severe                        |
|-------------------|-------------------------------|-----------------------------------------|-------------------------------|
| Infant            | $\leq$ 5%, children $\leq$ 3% | Infant 6-10%, children 4-6%             | Infant>10-15%, children>6-10% |
| Clinical state    | Alert                         | Drowsy,irritable                        | Lethargic, obtunded           |
| Blood pressure    | Normal                        | Normal                                  | Low                           |
| Heart rate        | Normal                        | Increase, weak pulse                    | Rapid, feeble pulse           |
| Capillary refill  | Normal                        | = 2 sec                                 | > 3 sec                       |
| Skin turgor       | Normal                        | Tenting                                 | Absent                        |
| Eyes              | Normal                        | Slightly sunken, reduced eyeball turgor | Sunken, soft eyeballs         |
| Oral mucosa, lips | Moist                         | Dry                                     | Very dry, parched             |
| Urine output      | Normal                        | Reduced                                 | Anuria                        |

<sup>\*</sup> With severe hyperosmolarity, skin and subcutaneous tissues are doughy rather than hypoelastic.

## Fluid and electrolyte therapy Fluid:

shock: NSS 10-20 mL/kg within 15-30 min

unshock: 10-20 mL/kg/hr 0.9% NSS in 1<sup>st</sup> 2 hr

5-10% dehydration

3<sup>rd</sup>-24<sup>th</sup> h Total fluid = 24 hr maintenance

+ 5-10% deficit in 48 hr

0.9% or 0.45% NSS (hyperchloremic metabolic acidosis)

(controversy between replacement over 24 and 48 hr)

not more than 4 L/day

```
Example: fluid in 30 kg child with DKA and without shock
First 2 hr: NSS 10-20 mL/kg/hr
```

= 300-600 mL/hr

Next 24 hr: maintenance (1,700 ÷ 24) + (3,000 ÷ 48) : 70 mL/hr + 63 mL/hr = 133 mL/hr NSS,0.45%NSS

### Electrolyte: K+, HCO<sub>3</sub><sup>-</sup>

K+: second hour,after voiding, insulin infusion Serum K < 6 mmol/L If serum K <2.5 mmoL/L initial hydration replace K 40 - 80 mmol in fluid 1L, not more than 0.5 mmol/kg/hr ½ KCl, ½ K<sub>2</sub>PO<sub>4</sub>

### **Bicarbonate**

severe acidosis pH < 6.9, HCO $_3$  < 5 mmol/L 7.5% NaHCO3 1-2 mmoL/kg, once intravenous drip within 1 hr

NaHCO<sub>3</sub>

Paradoxical CNS acidosis

Na add to hyperosmolality

Alkali increase hepatic ketone production

#### Insulin replacement after initial fluid expansion

Continuous low – dose intravenous insulin infusion
Short acting insulin 0.1 unit/kg/hr via insulin pump
Insulin 1 mL = 100 unit
50 unit in NSS 50 mL, 1 mL = 1 unit
Lowering blood glucose 75-100 (50-150) mg/dL/hr
Maintain BG at 180-200 mg/dL
If BG < 150 mg/dL – 10% dextrose solution
– reduced insulin 0.05U/kg/hr

### Blood glucose 250-300 mg/dL

Rehydration fluid 5% dextrose in NSS/2
Insulin infusion 0.05 unit/kg/hr
Start subcu short acting insulin
0.25-0.5 unit/kg/6 hr
Keep BS 180-200 mg/dL

#### **Monitor**

VS and neuro sign q 1 hr

Blood glucose q 1 hr

Serum electrolyte, blood gas q 2- 4 hr

Intake/output q 2- 4 hr

Urine ketone q 6 hr until plasma glucose

<250 mg/dL

Serum BUN, Cr, Ca, PO<sub>4</sub> in severe DKA

Flow sheet

Retained NG tube, urinary cath in shock, unconscious

#### Persistent acidosis

HCO<sub>3</sub> < 10 mmol/L after 8-10 hr of Px inadequate insulin effect infection

Check insulin dilution and rate Treat infection

#### **Transition**

Stopped IV fluid after oral fluid without vomiting RI or rapid acting insulin 0.25 U sc every 6 hrs Stopped IV insulin 60-120 min after sc RI

### Complications

Cerebral edema

Hypoglycemia

Persistent metabolic acidosis after Px 8-10 hr

Hypokalemia

Hypophosphatemia

Peripheral venous thrombosis

#### Cerebral edema

#### Risk factor

Young children < 5 yr

Severity of acidosis, dehydration

NaHCO<sub>3</sub> therapy

Failure of serum Na to increase appropriately during Px for DKA

Very rare in adults

#### Mechanism of cerebral edema

Complex: vasogenic, Cytotoxic, osmotic

1 st symptoms and signs: 2/3 within 6-7 hr

1/3 within 10-24 hr

after Px

#### CT brain

39% negative

26% diffuse edema

17% subarachnoid, intraventicular hemorrhage

Clinical diagnosis

### Monitoring

#### Diagnostic criteria

Abnormal motor, verbal response to pain

Decorticate, decerebrate posture

Cranial nerve palsy:- III, IV, VI

Abnormal neurologic respiratory pattern:- grunting, tachypnea, Cheyne-Stokes, apneustic

#### Major criteria

Altered consciousness, deceleration of heart rate

#### Minor criteria

Vomiting, headache, lethargy, diastolic BP > 90 mmHg, age < 5 yr

1 Dx+2 major, 1 major + 2 minor

#### Treatment of CE

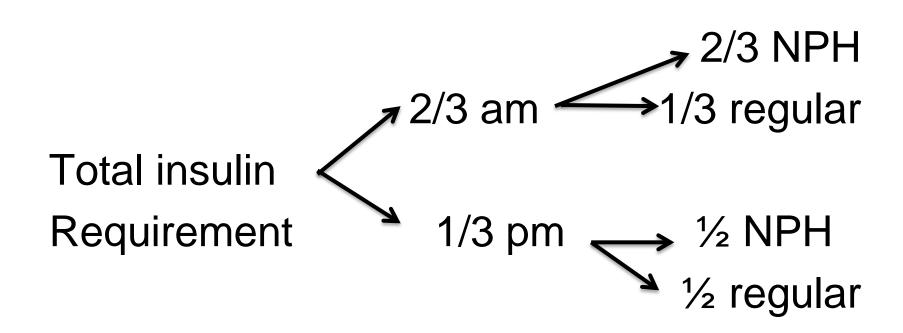
IV mannitol 1.0 g/kg over 20 minutes Repeat as necessary in 1-2 hr Rate of fluid reduction to 2/3 Head elevation If no response to mannitol, 5-10 mL/kg 3% saline rapidly (for acute intracranial hypertension) Respiratory compromised, intubation

### Conclusion

Treatment of DKA, 0.9% NSS 5-10% dehydration follow by 0.45% saline, K replacement

Low dose 0.1 U/kg/hr insulin IV infusion after fluid resuscitation

HCO<sub>3</sub> is contraindicated


CE is the most serious complication

### Maintenance therapy

```
Twice daily injection (TDI)
Insulin: intermediate + short 0.7-1 unit/kg/day
        2/3 in the morning, 1/3 in the evening
         (2:1)
                                        (1:1)
Multiple daily injection (MDI)
      : rapid, long acting insulin analoque
       self monitoring of BG
Keep BG premeal 80-130 mg/dL
Diet : CHO : fat : protein
```

50-55 : 25-30 : 15-20

### ການແບ່ງຢາ sc



# Self monitoring of blood glucose (SMBG)

ac breakfast, lunch, dinner, hs urine ketone if glucose

> 200 mg/dL keep BS 80-130 mg/dL

### ການໃຫ້ຄວາມຮູ້ກ່ຽວກັບພະຍາດ ເບົາຫວານ

- 1. ພະຍາດເບົາຫວານ
- 2. Insulin ແລະວິທີການສັກ
- 3. ອາຫານ ການອອກກຳລັງກາຍ
- 4. SMBG
- 5.ການເບີ່ງແຍງຕົນເອງແລະການແກ້ໄຂ hypo-ແລະ hyperglycemia
- 6. Complications